The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 2X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X 0 2 X 0 2X+2 X X X X 2X 2 0 X 2 2 2X 1 0 X 0 X 0 0 X X 2 X+2 2 X+2 2 2 X+2 X+2 0 0 X X 0 0 X X 2X 2 2 X+2 X+2 2 2 X+2 X+2 2X 2X 2X 3X 3X+2 2X+2 2X+2 3X+2 3X 2X 2X 3X 3X 2X+2 2X+2 3X+2 3X+2 3X 3X 2X 2X 2X+2 2X+2 3X+2 3X+2 2X 2X 3X 3X 2X+2 2X+2 3X+2 3X+2 X X+2 X 3X+2 X X 2X+2 X X 2 0 2X 2 2X+2 2 X 2X+2 X X X 0 0 0 X X 2X+2 X+2 3X+2 2 2 X+2 3X 2X 3X+2 2X 3X 2X+2 2X 3X+2 3X 2X+2 3X 2 X+2 2X X 2X+2 X 3X+2 0 0 X+2 X 2 X 2X 3X+2 3X 2X 2X+2 3X 3X+2 2X+2 2 X 3X+2 2X 0 X+2 X 2 X 2 0 X+2 2 X X+2 0 2X+2 3X X+2 0 2X 3X+2 3X 2X+2 X 0 3X+2 2 0 X 3X 2 X+2 X+2 X+2 X 2X+2 X X X+2 2X 3X+2 3X X+2 0 generates a code of length 87 over Z4[X]/(X^2+2) who´s minimum homogenous weight is 84. Homogenous weight enumerator: w(x)=1x^0+78x^84+204x^85+234x^86+116x^87+152x^88+72x^89+100x^90+36x^91+8x^92+20x^93+1x^96+1x^98+1x^130 The gray image is a code over GF(2) with n=696, k=10 and d=336. This code was found by Heurico 1.16 in 0.485 seconds.